Roll No.

Total Pages : 3

BT-4/J-21

44151

DISCRETE MATHEMATICS Paper–PC-CS-202A

Time : Three Hours]

[Maximum Marks: 75

Note : Attempt *five* questions in all, selecting at least *one* question from each unit.

UNIT-I

- 1. (a) Show that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n-1)}{3}$ by mathematical induction.
 - (b) Given that

 $(A \cap C) \subseteq (B \cap C)$

 $(A \cap \overline{C}) \subseteq (\overline{B \cap C})$

show that $A \subseteq B$.

- 2. (a) Construct the truth tables for the following statements
 - (i) $(p \to p) \to (p \to \overline{p})$.
 - (ii) $(p \vee \overline{q}) \to \overline{p}$.
 - (iii) $p \leftrightarrow (\overline{p} \vee \overline{q}).$
 - (b) Let A, B and C be sets such that (A ∩ B ∩ C) = φ, (A ∩ B) ≠ φ, (A ∩ C) ≠ φ and (B ∩ C) ≠ φ. Draw the corresponding Venn diagram.

Learn Loner

UNIT-II

- 3. (a) Find all the partitions of $B = \{a, b, c, d\}$.
 - (b) Let A = $\{a, b\}$ and B = $\{4, 5, 6\}$. Given each of the following :
 - (i) $A \times B$
 - (ii) $\mathbf{B} \times \mathbf{A}$
 - (iii) $A \times A$
 - (iv) $\mathbf{B} \times \mathbf{B}$.
- 4. (a) Show that if R_1 and R_2 are equivalence relations on A, then $R_1 n R_2$ is an equivalence relation on A.
 - (b) Let A = Z, the set of integers and let R is defined by a R b if and only if a C b. Is R is an equivalence relation ?

UNIT-III

- 5. (a) Prove that if $f : A \to B$ and $g : B \to C$ are one-to-one functions, then *gof* is one-to-one.
 - (b) Let A = B = C = R, and let $f : A \to B$ and $g : B \to C$ be defined by f(a) = a 1 and $g(b) = b^2$ find :
 - (i) (*fog*) (2)
 - (ii) (*gof*) (2)
 - (iii) (fof)(y)
 - (iv) (*gog*) (*y*).

Learn Loner

- (a) Let A and B be two finite set with same number of elements, and let f: A → B be an everywhere defined functions :
 - (i) If f is one-to-one, then f is onto.
 - (ii) If f is onto, then f is one-to-one.
 - (b) If *n* pigeons are assigned to *m* pigeonholes, and m < n, then atleast one pigeonhole contains two or more pigeons.

UNIT-IV

- 7. (a) Define the following :
 - (i) Group.
 - (ii) Cyclic group.
 - (b) Let H and K be subgroups of group G:
 - (i) Prove that H n K is subgroup of G.
 - (ii) Show that H u K need not be subgroup of G.
- 8. (a) Let G be an Abelian group and *n* is a fixed integer. Prove that the function $f: G \to G$ defined by $f(a) = a^n$, for $a \in G$ is a homomorphism.
 - (b) Let G be a group, and let $H = \{x/x \in G \text{ and } ax = xa \text{ for all } a \in G\}$. Show that H is a normal subgroup of G.