BCA/D-21
 MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE Paper-BCA-CTIS-104

1235

Time : Three Hours]
[Maximum Marks : 60
Note : Attempt five questions in all, selecting one question fromeach Unit. Q. No. 1 is compulsory.

Compulsory Question

1. (a) If $\mathrm{A}=\{2,4,6,8,10\}$

$$
\mathrm{B}=\{1,2,3,4,5,6,7\}
$$

$$
\mathrm{C}=\{2,6,7,10\} \text { and } \mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}
$$

then verify that $\mathrm{A} u(\mathrm{~B} \cup \mathrm{C})=(\mathrm{A} u \mathrm{~B}) \cup \mathrm{C}$.
(b) If A and B are Hermitian matrices show that $\mathrm{AB}-\mathrm{BA}$ is Skew-Hermitian.
(c) Define array and frequency. Give one example of each.
(d) Find the probability distribution of the number of headsin three tosses of a coin.

UNIT-I

2. (a) If R is an equivalence relation on a set A, show that R^{-} ${ }^{1}$ in also an equivalence relation.
(b) Let A be any set. Show that if C is a partial order on A then ' $<$ ' in a strict partial ordering relation on A. 6,6

LearnLoner

3. (a) Define contradiction and tautology propositions. Use truth table to establish contradiction and tautology from the following properties :
(i) $\left[\begin{array}{ll}(\sim q & p\end{array}\right] \quad q$.
(ii) $\left[\begin{array}{cc}p & (\sim q)]\end{array}[(\sim p) \vee q]\right.$.
(b) If W_{1} and W_{2} are two sub-spaces of a finite dimension vector space $\mathrm{V}(\mathrm{F})$ then $\operatorname{dim}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)=\operatorname{dim} \mathrm{W}_{1}+\operatorname{dim} \mathrm{W}_{2}-\operatorname{dim}\left(\mathrm{W}_{1} \mathrm{n} \mathrm{W}_{2}\right)$.

UNIT-II

4. (a) Solve the system of equations:

$$
\begin{gathered}
2 x+8 y+5 z=5 x \\
+y+z=-2 x \\
+2 y-z=2
\end{gathered}
$$

(b) Find eigen value and eigen vectors of matrix

$$
\begin{array}{cccc}
& 1 & 0 & 1 \\
\text { A } & 1 & 2 & 1 \\
& 2 & 2 & 3
\end{array} \quad 6,6
$$

5. (a) Define following terms with the help of example :
(i) Sub graph.
(ii) Planar graph.
(iii) Hamilton path.
(iv) Graph isomorphism.
(b) State and prove Euler's formula for connected planar graph.

LearnLoner

UNIT-III

6. (a) The average weight of 150 students in a class is 80 kg . The average weight of boys in the class is 85 kg and that of girls is 70 kg . Find the numbers of boys and girls in the class separately.
(b) Calculate Mediam and Mode of the data given below :

Marks	10	20	30	40	50	60
No. of students	8	23	45	65	75	80

7. (a) Find the range, coeff. of range and quartile deviation from the following data :

Class	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	3	5	15	10	4	2

(b) Calculate mean deviation and its co-efficient for the following distribution :

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	5	8	15	16	6

UNIT-IV

8. (a) Two unbiased dice are thrown together at random. What is the expected value of sum of the numbers shown by the two dice?
(b) A die is thrown 6 times. Getting an odd number is a success. What is the probability of :
(i) 5 successes
(ii) Atleast 5 successes
(iii) Atmost 5 successes. 6,6
9. (a) State and prove Baye's theorem on probability.
(b) From a lot of 10 items containing 3 defective items, a sample of 4 items is drawn at random. Let the random variable X denote the number of defective items in the sample. If the sample is drawn without replacement, find the mean and variance of X .

6,6

LearnLoner

