BCA/M-23
 1866

MATHEMATICAL FOUNDATIONS-II

BCA-123
Time : Three Hours]
[Maximum Marks : 80
Note : Attempt Five questions in all, selecting one question from each Unit. Q. No. 1 is compulsory.
(Compulsory Question)

1. (a) If p and q be any statement then construct the truth table $\sim(p \wedge q)$.
(b) Define subgroup.
(c) Define skew-symmetric matrix with example.
(d) Define prime ideal of a ring.
(e) State Cayley-Hamilton Theorem.
(f) Define Singular matrix.
(g) Define order of an element of a group.
(h) Construct a 2×2 matrix whose elements are given by $a_{i j}=i . j$.
$8 \times 2=16$

Unit I

2. (a) Prove that $[(p \Leftrightarrow q) \wedge(q \Rightarrow r) \wedge r] \Rightarrow r$ is a tautology.
(b) Prove that $3^{2 n+2}-8 n-9$ is divisible by 64 . 8
3. (a) Prove that $3^{n}>2^{n}$ by Principle of Mathematical Induction for all $n \in N$.
(b) Show that:

$$
\sim(p \leftrightarrow q \equiv(\sim p) \leftrightarrow q \equiv p \leftrightarrow(\sim q)
$$

Unit II

4. (a) Let $G=\{0,1,2,3,4\}$, find the order of the elements of the group G under the binary operatio addition modulo 5.
(b) If every element of a group is its own inverse, then show that the group is abelian.
5. (a) Prove that intersection of the two subring is a ring.
(b) Let R be a ring of 2×2 matrices over integers. Let $\mathrm{S}=\left\{\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right]: a, b\right.$ integers $\}$, then S is a left ideal but not right ideal.

Unit III

6. (a) Find rank of the Matrix
$\left[\begin{array}{llll}9 & 0 & 2 & 3 \\ 0 & 1 & 5 & 6 \\ 4 & 5 & 3 & 0\end{array}\right]$ reducing it to Normal Form.
(b) If $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$, show that :

$$
\mathrm{A}^{3}-23 \mathrm{~A}-40 \mathrm{I}=0
$$

7. (a) Solve using rank method :

$$
\begin{array}{r}
x+y+z=0 \\
2 x-3 y+z=9 \\
x-y+z=0
\end{array}
$$

(b) Solve :

$$
\begin{array}{r}
x-y+z=0 \\
x+2 y-z=0 \\
2 x+y+3 z=0
\end{array}
$$

Unit IV

8. Find eigen values and eigen vectors of the Matrix

$$
\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 2 & 1 \\
-1 & 2 & 2
\end{array}\right]
$$

9. Verify Cayley-Hamilton Theorem for the Matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 1 \tag{16}\\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \text {, and hence find its inverse. }
$$

