LearnLoner

Roll No.

Total Pages : 2

1889

BCA/M21

MATHEMATICAL FOUNDATIONS-II

Paper–BCA-123

Time allowed : 3 Hours

Maximum Marks : 80

Note: Attempt five questions in all, selecting one question from each unit. Question No. 9 is compulsory. All questions carry equal marks.

UNIT-I

1.	(i)	Show that : $[(p \rightarrow q) \ (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.	8			
	(ii)	Construct the truth table of the following statement :	8			
		(a) $(p \Leftrightarrow \neg q) \Leftrightarrow (q \Rightarrow p)$ (ii) $(p \land q) \boxdot \neg (p \boxdot q)$.				
2.	(i)	Prove by the principle of Mathematical Induction that the sum of fin	rst			
		<i>n</i> natural number is $\frac{n(n+1)}{2}$. for all $n \in N$.	8			
	(ii)	For all $n \in N$, show that $11^{n+2} + 12^{2n+1}$ is divisible by 133.	8			
	UNIT-II					
3.	(i)	Show that the set $G = \{-1, 1, -i, i\}$ is a group with respect	to			
		multiplication.	8			
	(ii)	Let $G = \{0, 1, 2, 3, 4\}$. Find the order of the elements of the groups	G			
		under the binary operation 'addition modulo 5.'	8			
4.	(i)	Prove that the set of Rational numbers is a field with respect	to			
		addition and multiplication.	8			
	(ii)	Prove that the necessary and sufficient conditions for a non-emp	ty			
	subset S of ring R to be a subring of R are					
		(a) $a, b \in S \Longrightarrow a - b \in S$ (b) $a, b \in S \Longrightarrow a - b \in S$.	8			
UNIT-III						

(i) Find the inverse of the matrix : $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ 5. 8

(ii) Find X and Y if
$$2X + Y = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$$
 and $X - 2Y = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$. 8
1889/K/188 P.T.O.

LearnLoner

8

6. (i) Find the rank of the following matrix :

 $\left[\begin{array}{rrrr} 0 & -1 & 2 \\ 4 & 3 & 1 \\ 4 & 2 & 3 \end{array}\right]$

(ii) Using matrix method, solve the following system of equation : 8 x + y + z = 6 x - y + x = 2 2x + y - z = 1.

UNIT-IV

- 7. Find the characteristics roots and the corresponding vectors for the following matrix : 16
 - $\left[\begin{array}{rrrr} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{array}\right]$

8. Verify Cayley Hamilton theorem and find A^{-1} for the matrix : 16

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{array} \right]$$

Compulsory Question

9.	(i) Identify the quantifiers and write the negation of the statements		
		exists a capital for every state in India."	2
	(ii)	Define Normal Subgroups.	2
	(iii)	Define Ring with unity.	2
	(iv)	Define Skew-symmetric matrix with example.	2
	` '	Find the Spectrum of the matrix :	2
		$\left[\begin{array}{rrrrr} 2 & 7 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & -6 \end{array}\right]$	
	(vi)	Prove that 'O' is a latent root of a matrix A if A is singular.	2
	(vii)	If A is a square matrix then show that $A + A^{\theta}$ is Hermitian.	2
	(viii)) Write composition table for S with respect to multiplication module	οσ
		where $S = \{0, 1, 2, 3, 4, 5\}.$	2

1889/K/188