BCA/M21

MATHEMATICAL FOUNDATIONS-II

Paper-BCA-123

Time allowed : $\mathbf{3}$ Hours
Maximum Marks : 80
Note: Attempt five questions in all, selecting one question from each unit. Question No. 9 is compulsory. All questions carry equal marks.

UNIT-I

1. (i) Show that: $[(p \rightarrow q)(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a tautology. 8
(ii) Construct the truth table of the following statement :
(a) $\quad(p \Leftrightarrow \sim q) \Leftrightarrow(q \Rightarrow p)$
(ii) $\quad(p \wedge q) \varpi \sim(p \varpi q)$.
2. (i) Prove by the principle of Mathematical Induction that the sum of first n natural number is $\frac{n(n+1)}{2}$. for all $n \in N$.
(ii) For all $n \in N$, show that $11^{n+2}+12^{2 n+1}$ is divisible by 133 .

UNIT-II

3. (i) Show that the set $G=\{-1,1,-i, i\}$ is a group with respect to multiplication.
(ii) Let $G=\{0,1,2,3,4\}$. Find the order of the elements of the groups G under the binary operation 'addition modulo 5.'
4. (i) Prove that the set of Rational numbers is a field with respect to addition and multiplication.
(ii) Prove that the necessary and sufficient conditions for a non-empty subset S of ring R to be a subring of R are
(a) $\mathrm{a}, \mathrm{b} \in \mathrm{S} \Rightarrow \mathrm{a}-\mathrm{b} \in \mathrm{S}$
(b) $\mathrm{a}, \mathrm{b} \in \mathrm{S} \Rightarrow \mathrm{a}-\mathrm{b} \in \mathrm{S}$.
8

UNIT-III

5. (i) Find the inverse of the matrix : $\mathrm{A}=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$
(ii) Find X and Y if $2 \mathrm{X}+\mathrm{Y}=\left[\begin{array}{lll}4 & 4 & 7 \\ 7 & 3 & 4\end{array}\right]$ and $\mathrm{X}-2 \mathrm{Y}=\left[\begin{array}{rrr}-3 & 2 & 1 \\ 1 & -1 & 2\end{array}\right] \cdot 8$

LearnLoner

6. (i) Find the rank of the following matrix :

$$
\left[\begin{array}{rrr}
0 & -1 & 2 \\
4 & 3 & 1 \\
4 & 2 & 3
\end{array}\right]
$$

(ii) Using matrix method, solve the following system of equation :

$$
\begin{aligned}
& x+y+z=6 \\
& x-y+x=2 \\
& 2 x+y-z=1 .
\end{aligned}
$$

UNIT-IV

7. Find the characteristics roots and the corresponding vectors for the following matrix :
$\left[\begin{array}{rrr}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$
8. Verify Cayley Hamilton theorem and find A^{-1} for the matrix :

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]
$$

Compulsory Question

9. (i) Identify the quantifiers and write the negation of the statements "There exists a capital for every state in India."
(ii) Define Normal Subgroups. 2
(iii) Define Ring with unity. 2
(iv) Define Skew-symmetric matrix with example. 2
(v) Find the Spectrum of the matrix :

$$
\left[\begin{array}{rrr}
2 & 7 & 0 \tag{2}\\
0 & 11 & 0 \\
0 & 0 & -6
\end{array}\right]
$$

(vi) Prove that ' O ' is a latent root of a matrix A if A is singular. 2
(vii) If A is a square matrix then show that $\mathrm{A}+\mathrm{A}^{\theta}$ is Hermitian. 2
(viii) Write composition table for S with respect to multiplication modulo σ where $S=\{0,1,2,3,4,5\}$.

