Roll No.

BT-3/D-21: 43135
 BS-205 A : Mathematics-III

[Max. Marks: 75
Tinc: $\mathbf{3}$ Hours]

Note: Attempt any five questions.
1 (a) Test the convergence of $\sum_{n=1}^{\infty}\left(\frac{(n+1)(n+2)}{n^{2} \sqrt{n}}\right)$
(b) Discuss the convergence or divergence of the series

$$
\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3 \cdot 4}+\cdots \quad x>0
$$

2 (a) Expand $f(x)=x \sin x \quad$ as a Fourier series in $(0,2 \pi)$.
(b) Find the half-range sine series for $f(x)=x(\pi-x)$ in the interval $(0, \pi)$ and deduce that

$$
\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+--=\frac{\pi}{32}
$$

3 (a) Solve $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$ using exact differential equation.
(b) Solve the differential equation

$$
x^{2}\left(\frac{d y}{d x}\right)^{2}+x y \frac{d y}{d x}-6 y^{2}=0
$$

4 (a) Solve $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{2 x}$
(b) Solve by the method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x} \sin x
$$

5 (a) Change the order of integration in the interval:

$$
\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2(a x)^{\frac{1}{2}}} d y d x
$$

(b) Show that area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is

$$
\frac{1 i}{3} a^{2}
$$

(b) Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

7 (a) If $\vec{r}=x t+y j+z \hat{k}$. show that $\Delta r^{n}=n r^{n-2} \vec{r}$
(b) Prove that $\quad \nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$

8 (a) Evaluate the line integral $\int_{C}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$. where C is the square formed by the lines $x= \pm 1, y= \pm 1$
(b) Verify Green's Theorem for $\oint_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$. where c is bounded by $y=x$ and $y=x^{2}$.

