GSE/D-22
 1164 LOGICAL ORGANIZATION OF COMPUTER-I
 BCA-114

Time : Three Hours]

[Maximum Marks : 80

Note: Attempt Fïve questions in all. Q. No. 1 is compulsory. Attempt four more questions, selecting one question from each Unit. All questions carry equal marks.

1. Answer the following questions in brief :
(a) What is Radix ? What are digits of hexadecimal number system ?2
(b) Represent ' A ' in ASCII and EBCDIC codes. 2
(c) What is principle of duality ? Explain. 2
(d) State DeMorgan's laws. 2
(e) What is XOR gate ? Draw truth table and symbol.
(f) What is AND gate? Draw truth table and symbol. 2

(g) What is Multiplexer ? Draw the diagram for 4×1
multiplexer and explain its working.

Unit I

2. (a) Convert $(37.23)_{10}$ into binary and hexadecimal number systems.

8
(b) Add (9) 10 and $(-14)_{10}$ in two's complement form.
3. (a) What are BCD codes ? Write self-complementing and cyclic BCD codes.
(b) What are error detecting and correcting code Explain with an example.

Unit II

4. (a) State the postulates of Boolean algebra.
(b) Prove the following Boolean theorems using Boolean postulates :
(i) $X+X \cdot Y=X$
(ii) $X+1=1$.
5. (a) What are canonical representation of Boolean functions ? Explain POS and SOP form of representation with examples.
(b) Simplify the following Boolean function using Kmap :
$\mathrm{F}(a, b, c, d)=\Sigma(0,1,2,4,5,6,8,9,12,13,14)$.

Unit III

6. (a) What are NAND and NOR gates ? Why are these called as universal gates ? Explain.
(b) Implement $\mathrm{F}=\mathrm{A} . \mathrm{B}+\mathrm{C} . \mathrm{D}+\mathrm{E}$ using NAND logic only. 8
7. (a) What is combinational logic ? What are characteristics of combinational circuits ? Also discuss design procedure of combinational circuits.
(b) What is analysis procedure ? Explain with an example.

8

Unit IV

8. (a) What is full adder ? Design full adder circuit. 8
(b) What is comparator circuit ? Design 3-bit comparator circuit.
9. (a) What is demultiplexer ? Design 1×4 demultiplexer circuit.

8
(b) Design a circuit to convert 8421 BCD code into
excess- 3 BCD code.

