GSE/D-22

1164

LOGICAL ORGANIZATION OF COMPUTER-I BCA-114

Time: Three Hours] [Maximum Marks: 80
Note: Attempt Five questions in all. Q. No. 1 is compulsory.
Attempt four more questions, selecting one question
from each Unit. All questions carry equal marks.
1. Answer the following questions in brief:
(a) What is Radix? What are digits of hexadecimal
number system ?
(b) Represent 'A' in ASCII and EBCDIC codes. 2
(c) What is principle of duality? Explain. 2
(d) State DeMorgan's laws.
(e) What is XOR gate? Draw truth table and symbol.
ALL PRINCES AND ALL TONE SOME TOWN AND TO
(f) What is AND gate? Draw truth table and symbol.
2
(g) What is Multiplexer? Draw the diagram for 4 ×1
 multiplexer and explain its working.
(5.20/6) T_116/

Unit I

- 2. (a) Convert (37.23)₁₀ into binary and hexadecimal number systems.
 - (b) Add $(9)_{10}$ and $(-14)_{10}$ in two's complement form.
- 3. (a) What are BCD codes? Write self-complementing and cyclic BCD codes.
 - (b) What are error detecting and correcting code? Explain with an example.

Unit II

- 4. (a) State the postulates of Boolean algebra.
 - (b) Prove the following Boolean theorems using Boolean postulates:
 - (i) X + X.Y = X
 - (ii) X + 1 = 1.
- 5. (a) What are canonical representation of Boolean functions? Explain POS and SOP form of representation with examples.
 - (b) Simplify the following Boolean function using K-map:

 $F(a, b, c, d) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14).$

Unit III

- 6. (a) What are NAND and NOR gates? Why are these called as universal gates? Explain.
- L-1164

	(b)	Implement $F = A.B + C.D + E$ using NAND logic
	*	only.
7.	(a)	What is combinational logic ? What are
		characteristics of combinational circuits ? Also
		discuss design procedure of combinational circuits.
		8
	(b)	What is analysis procedure? Explain with an
		example. 8
		Unit IV
8.	(a)	What is full adder? Design full adder circuit. 8
	(b)	What is comparator circuit? Design 3-bit comparator
		circuit.
9.	(a)	What is demultiplexer? Design 1 × 4 demultiplexer
		circuit.
. =	(b)	Design a circuit to convert 8421 BCD code into
		excess-3 RCD code
		oncess 5 DCD code.

8