Roll No.
BT-5/D-21

FORMAL LANGUAGE AND AUTOMATA THEORY

Paper-PC-CS-303A

Time Allowed : 3 Hours]
[Maximum Marks : 75
Note : Attempt five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

UNIT-I

1. (a) Prove that the Language $\mathrm{A}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not regular using pumping lemma.
(b) Prove that every NFA can be converted to an equivalent DFA that has a single accepting state.
2. Give state diagrams of DFAs recognizing the following languages over the alphabet $\{0,1\}$.
(a) $\{\mathrm{W} \mid \mathrm{W}$ contains at least two 0 s and at most one 1$\}$.
(b) $\{\mathrm{W} \mid \mathrm{W}$ starts with 0 and has odd length, or starts with 1 and has even length $\}$.

UNIT-II

3. (a) Show that the given language $\left\{a^{i} b^{2 i} a^{i} \mid i \geq 0\right\}$. is not a CFL using the pumping lemma.
(b) Describe the language generated by the CFG with productions $\mathrm{S} \rightarrow \mathrm{ST}|\wedge \mathrm{T} \rightarrow \mathrm{aS}| \mathrm{bT} \mid \mathrm{b}$.
4. (a) Let L be the language generated by the CFG with productions $\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{ab}| \mathrm{SS}$. Show that no string in L begins with abb .
(b) Draw an NFA accepting the language generated by the grammar with productions $\mathrm{S} \rightarrow \mathrm{abA}|\mathrm{bB}| \mathrm{aba} \quad \mathrm{A} \rightarrow \mathrm{b}|\mathrm{aB}| \mathrm{bA} \quad \mathrm{B} \rightarrow \mathrm{aB} \mid \mathrm{aA}$.
5. (a) Give a transition table for PDA that accept the language $\left\{a^{i} b^{j} \mid i \leq j \leq 2 i\right\}$.
(b) Construct a Mealy machine which can generate strings having EVEN and ODD numbers of 1 's or 0 's.
6. (a) Draw a PDA that accept the language :
$\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 2^{\mathrm{k}} \mid \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0\right.$ and $\mathrm{j}=\mathrm{i}$ or $\left.\mathrm{j}=\mathrm{k}\right\}$.
(b) Give a transition table for a deterministic PDA that accepts the language $\left\{a^{i} b^{i+j} a^{j} \mid i, j \geq 0\right\}$.

UNIT-IV

7. (a) Write down an unrestricted grammar that generate the language $\left\{a^{n} b^{n} a^{n} b^{n} \mid n \geq 0\right\}$.
(b) State and explain Cook-Levin theorem.
8. (a) Show that the set of languages L over $\{0,1\}$ such that neither L nor L^{\prime} is recursively enumerable is uncountable.
(b) Prove that language satisfiable (or the decision problem sat) is NPcomplete.
