Roll No.

BT-4/J-22

DISCRETE MATHEMATICS
 Paper-PC-CS-202A

Time : Three Hours]
[Maximum Marks : 75
Note : Attempt five questions in all, selecting at least one question from each unit.

UNIT-I

1. (a) Using mathematical induction, prove that $n^{3}+2 n$ is divisible by 3 .
(b) Prove that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
2. (a) Construct the truth table for the following statements :
(i) $\neg(p \wedge q) \wedge(\neg r)$.
(ii) $\neg(p \wedge \neg q) \vee(r)$.
(b) If the set A is finite and contains n elements, prove that the power set $\mathrm{P}(\mathrm{A})$ of the set A contains 2^{n} elements.

UNIT-II

3. (a) Consider relation

$$
\mathrm{R}=\{(a, b) \mid \text { length of string } a=\text { length of string } b\}
$$ on the set of strings of English letters. Prove that R is an equivalence relation.

(b) Show that the inclusion relation \subseteq is a partial ordering relation on the power set of a set.
4. (a) Given $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{a, b)$ and $\mathrm{C}=\{l, m, n\}$. Find each of the following sets
(i) $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$.
(ii) $\mathrm{A} \times \mathrm{C}$.
(iii) $\mathrm{B} \times \mathrm{C} \times \mathrm{A}$.
(b) Define Lattice. Prove that D_{36} the set of divisors of 36 ordered by divisibility forms a lattice.

UNIT-III

5. (a) Prove that the function $f: \mathrm{N} \rightarrow \mathrm{N}$ defined as

$$
f(n)= \begin{cases}n+1, & n \text { is odd } \\ n-1, & n \text { is even }\end{cases}
$$

is inverse of itself.
(b) Solve : $a_{n}+a_{n-1}=3 n 2^{n}, a_{0}=0$, using Generating function method.
6. (a) Let $f: Z \rightarrow Z$ be defined by $f[x]=3 x^{3}-x$. Is this function
(i) One-to-one?
(ii) Onto?
(b) There are 280 people in the party. Without knowing anybody's birthday, what is the largest value of n for which we can prove that at least n people must have been born in the same month?

UNIT-IV

7. (a) Prove that the identity element in a group is unique.
(b) Let G be a group and $a \in G$. Prove that the cyclic subgroup H of G generated by a is a normal subgroup of $\mathrm{N}(a)=\{x \in \mathrm{G}: x a=a x\}$.
8. (a) Let P be a subgroup of a group G and let

$$
\mathrm{Q}=\{x \in \mathrm{G}: x \mathrm{P}=\mathrm{P} x\}
$$

Is Q a subgroup of G ?
(b) Let $f:(\mathrm{R},+) \rightarrow\left(\mathrm{R}_{+}, \times\right)$is defined as $f(x)=e^{x}$ for all x in R , where $\mathrm{R} \rightarrow$ set of real numbers ond $\mathrm{R}_{+} \rightarrow$ set of positive real numbers. Prove that f is a homomorphism. Is f an isomorphism?

