BT-3/D-21

DIGITAL ELECTRONICS

Paper-ES-207A/ES-205A

Time : Three Hours]
[Maximum Marks : 75

Note : Attempt five questions in all, selecting at least one question from each unit.

UNIT-I

1. (a) Prove the following using boolan algebric theorems:

$$
\begin{aligned}
& \overline{\mathrm{A} B C}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA} \\
& (\mathrm{~A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\overline{\overline{\overline{(\mathrm{A}+\mathrm{B})}+\overline{(\mathrm{C}+\mathrm{D})}}}
\end{aligned}
$$

(b) Reduce the following expressions using K-Map:
(i) $\mathrm{F}=\Pi \mathrm{M}(1,2,5,6,8,9,10)$
(ii) $\mathrm{f}=\Sigma(0,1,4,5,7,13,14,15)$.

Realise the obtained expressions using NAND/NOR logic.
2. (a) Explain the working of TTL NAND gate. Also explain Tristate logic.
(b) Explain how CMOS logic gates can be interfaced with TTL logic gates.

UNIT-II

3. (a) Design a full subtractor.
(b) State and explain the working of four bit BCD adder with its logic diagram.
4. (a) What is multiplexer? Explain working of $8: 1$ Multiplexer. How can 16:1 MUX be designed using 8:1 Mux and OR gate?
(b) Design an even parity checker. 4
(c) Design a two bit comparator.

UNIT-III

5. (a) Differentiate between : 3
(i) Sequential circuits and Combinational circuits.
(ii) Level Trigerring and Edge Triggering.
(b) What are flip-flops? Explain race around condition of JK flip-flop. Also describe how is it removed by master slave flipflop?
(c) Convert J-K flip-flop to D Flip-Flop.
6. (a) Design a decade synchronous counter.
(b) Design a bidirectional shift register. Explain its working.

UNIT-IV

7. (a) Write down the characteristics of D/A converters. Explain them.
(b) Explain the working of dual slope ADC.
8. (a) Write note on ROM. Explain with the help of timing diagrams the read and write operation occurring in semiconductor memory.
(b) Differentiate between PAL and PLA. 5
