Total Pages: 03

GSM/D-22

1172

COMPUTER ORIENTED NUMERICAL METHODS BCA-236

Time: Three Hours

[Maximum Marks: 80

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks.

(Compulsory Question)

- 1. Attempt the following questions in short: $8\times2=16$
 - (a) Explain Bairstow's method.
 - (b) Define interpolation and approximation.
 - (c) Discuss pitfalls in differentiation.
 - (d) Discuss order of convergence of Newton-Raphson method.
 - (e) Write the Taylor series formula.
 - (f) Explain orthogonal properties of Chebyshev polynomial.
 - (g) Explain the types of errors that occur in numerical computations.
 - (h) Discuss Predictor Corrector method.

(5-13/16)L-1172 P.T.O.

Learn Loner

Unit I

- How are floating point numbers represented in 2. (a) computer? Discuss Arithmetic operations with normalised (b) floating point numbers. 8 3. Explain the following Iterative methods: (a) Newton-Raphson method 8 (b) Bisection method. 8 Unit II 4. (a) Explain algorithms of Gauss-Elimination methods for three equations. 8 Solve the following equations by Gauss elimination (b) method: 8 $4x_1 + x_2 + 3x_3 = 11$ $3x_1 + 4x_2 + 2x_3 = 11$ $2x_1 + 3x_2 + x_3 = 7$. 5. Find y for x = 0.1 by using Euler's method:
- 5. Find y for x = 0.1 by using Euler's method: 1 $\frac{dy}{dx} = \frac{y x}{y + x}, y = 1 \text{ at } x = 0 \text{ with initial condition.}$

Unit III

6. Use Newton's formula for interpolation to find the net premium at age 25 from the table given ahead: 16

L-1172

Age	20	24	28	32
Annual Net Premium	0.01427	0.01581	0.01772	, 0.01996

7. Explain Chebyshev polynomials. Prove the recursion relation $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$. Also find the first six Chebyshev ploynomials.

Unit IV

8. Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by using :

(i) Simpson's
$$\frac{1}{3}$$
 rule

8

(ii) Simpson's
$$\frac{3}{8}$$
 rule.

8

9. Explain the following:

(i) Numerical differentiation and integration

8

(ii) Gaussian quadrature.

8

Learn Loner