BT-1/D-22

 MULTI-VARIABLE CALCULUS AND

 MULTI-VARIABLE CALCULUS AND LINEAR ALGEBRA
 BS-135A

41040

Time : Three Hours]

[Maximum Marks : 75

Note: Attempt Five questions in all, selecting at least one question from each Unit.

Unit I

1. (a) Prove the following :

$$
\int_{0}^{\infty} \frac{e^{-x^{2}}}{\sqrt{x}} d x \times \int_{0}^{\infty} x^{2} e^{-x^{4}} d x=\frac{\pi}{4 \sqrt{2}}
$$

(b) Find the volume of the solid generated by revolution of the plane area bounded by $y^{2}=16 x$ and $y=4 x$ about the x-axis. 7.5
2. (a) Discuss the applicability of Rolle's theorem to the function $f(x)=|x|$ in $[-1,1]$. 7.5
(b) Evaluate the limit of the function :

$$
\operatorname{Lt}_{x \rightarrow 0}(\operatorname{cosec} x)^{\frac{1}{\log x}}
$$

Unit II

3. (a) Test the convergence of the $\sum \frac{n^{3}+a}{2^{n}+a}$.
(b) Discuss the convergence of the series :

$$
\frac{1^{2}}{2^{2}}+\frac{1^{2}}{2^{2}} \cdot \frac{3^{2}}{4^{2}}+\frac{1^{2}}{2^{2}} \cdot \frac{3^{2}}{4^{2}} \cdot \frac{5^{2}}{6^{2}}+\ldots
$$

4. (a) Find the Fourier series to represent :

$$
f(x)=\left\{\begin{array}{lc}
1+\frac{2 x}{\pi}, & -\pi \leq x \leq 0 \\
1-\frac{2 x}{\pi}, & 0 \leq x \leq \pi
\end{array}\right.
$$

(b) Obtain the Fourier series of the function :

$$
f(x)= \begin{cases}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{cases}
$$

Unit III

5. (a) Expand $\cos x$ in powers of $\left(x-\frac{\pi}{2}\right)$, and hence find the value of $\cos 91^{\circ}$ corrected up to four decimal places:
(b) If $u=f(r)$ where $r^{2}=x^{2}+y^{2}$, prove that: 7.5 $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$.
6. (a) If $(\cos x)^{y}=(\sin y)^{x}$, find $\frac{d y}{d x}$.
(b) A thin closed rectangular box is to have one edge equal to twice the other, and a constant volume $72 \mathrm{~m}^{3}$. Find the least surface area of the box. 7.5

Unit IV

7. (a) By applying the Gauss Jordan Method, find the inverse of the matrix $\left[\begin{array}{ccc}-1 & 0 & 6 \\ 3 & 6 & 1 \\ -5 & 1 & 3\end{array}\right]$.
(b) If matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, find the matrix

> represented by :

$$
A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+6 A^{2}-3 A+2 I
$$

8. Find the eigen values and the corresponding eigen vectors of the matrix given by $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
