	13/45/3
Roll No.	10

Total Pages: 03

BT-3/D-23

43140

DIGITAL ELECTRONICS ES-207A

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Differentiate between the following:
 - (i) Positive and negative logic
 - (ii) Positive and negative logic.
 - (b) List various logic operations. Mention gates corresponding to them. Explain, how NAND gate can be used to perform OR operation.
 - (c) Convert decimal numbers into BCD (i) 46, (ii) 327.89, (iii) 20.30.
- 2. (a) State and prove (i) Duality Theorem (ii) De-Morgan's theorem. 5

(5-41/10)L-43140

P.T.O.

(b)	Minimize the given expression using K-Map.
	$F(A, B, C, D) = \Sigma(1, 2, 4, 5, 7, 8, 9, 11, 13, 14).$
	Realise the obtained expression using logic gates.
	10
	Unit II
(a)	Draw logic diagram of full adder. Explain its
	working.
(b)	Design an octal to binary encoder.
(a)	What is a multiplexer? Explain working of an
	n: 1 multiplexer.
(b)	Design a 4 bit comparator.
	Unit III
(a)	Differentiate between the following: 5
	(i) Latch and flip-flop
	(ii) Level triggering and edge triggering.
(b)	Explain working of JK flip-flop. Discuss race around
	problem of JK flip-flop. Also describe how Master-
	Slave flip-flop overcomes this problem. 10
(a)	Explain application of shift register as ring counter.
(h)	
	Design a synchronous mode 5 counter. Use JK flip-
	flops for designing the counter.

LearnLoner.com

3.

5.

6.

L-43140

Unit IV

7.	Exp	dain working of the following:	1
	(i)	R-2R ladder type DAC	
	(ii)	Successive Approximation type ADC.	
8.	(a)	Draw diagram of a memory cell. Explain e	ither
		read OR write operation with timing waveform	ıs in
		memory cell.	10
	(b)	Write a note on ROM.	5