
LeetCode

SOLUTION IN C++

WWW.LEARNLONER.COM

Dynamic
Programming

Dynamic Programming Questions
Download PDF

Dynamic Programming Questions

5. Longest Palindromic Substring
53. Maximum Subarray
62. Unique Paths
63. Unique Paths II
64. Minimum Path Sum
70. Climbing Stairs
72. Edit Distance
121. Best Time to Buy and Sell Stock
198. House Robber
256. Paint House
276. Paint Fence
303. Range Sum Query - Immutable
338. Counting Bits
392. Is Subsequence
647. Palindromic Substrings
650. 2 Keys Keyboard
877. Stone Game
931. Minimum Falling Path Sum
1035. Uncrossed Lines
1277. Count Square Submatrices with All Ones
1314. Matrix Block Sum
1326. Minimum Number of Taps to Open to Water a Garden
1335. Minimum Difficulty of a Job Schedule
1458. Max Dot Product of Two Subsequences
1473. Paint House III
1478. Allocate Mailboxes

5. Longest Palindromic Substring
Description

Solution

01/13/2020 (Dynamic Programming):

01/13/2020 (Expand Around Center):

Given a string s, find the longest palindromic substring in s. You may assume
that the maximum length of s is 1000.

Example 1:

Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:

Input: "cbbd"
Output: "bb"

class Solution {
public:
 string longestPalindrome(string s) {
 int n = s.size(), start, max_len = 0;
 if (n == 0) return "";
 vector<vector<bool>> dp(n, vector<bool>(n, false));
 for (int i = 0; i < n; ++i) dp[i][i] = true;
 for (int i = 0; i < n - 1; ++i) dp[i][i + 1] = s[i] == s[i + 1];
 for (int i = n - 3; i >= 0; --i) {
 for (int j = i + 2; j < n; ++j) {
 dp[i][j] = dp[i + 1][j - 1] && s[i] == s[j];
 }
 }
 for (int i = 0; i < n; ++i) {
 for (int j = i; j < n; ++j) {
 if (dp[i][j] && j - i + 1 > max_len) {
 max_len = j - i + 1;
 start = i;
 }
 }
 }
 return s.substr(start, max_len);
 }
};

class Solution {
public:
 string longestPalindrome(string s) {

53. Maximum Subarray
Description

Solution

01/13/2020 (Dynamic Programming):

 int n = s.size(), start = 0, max_len = n > 0 ? 1 : 0;
 for(int i = 0; i < n; ++i) {
 for (int l = i - 1, r = i; l >= 0 && r < n && s[l] == s[r]; --l, ++r) {
 if (r - l + 1 > max_len) {
 max_len = r - l + 1;
 start = l;
 }
 }
 for (int l = i - 1, r = i + 1; l >= 0 && r < n && s[l] == s[r]; --l, ++r)
{
 if (r - l + 1 > max_len) {
 max_len = r - l + 1;
 start = l;
 }
 }
 }
 return max_len == 0 ? "" : s.substr(start, max_len);
 }
};

Given an integer array nums, find the contiguous subarray (containing at least
one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:

If you have figured out the O(n) solution, try coding another solution using the
divide and conquer approach, which is more subtle.

62. Unique Paths
Description

class Solution {
public:
 int maxSubArray(vector<int>& nums) {
 int n = nums.size(), max_sum = nums[0];
 for (int i = 1; i < n; ++i) {
 if (nums[i - 1] > 0) nums[i] += nums[i - 1];
 max_sum = max(max_sum, nums[i]);
 }
 return max_sum;
 }
};

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the
diagram below).

The robot can only move either down or right at any point in time. The robot is
trying to reach the bottom-right corner of the grid (marked 'Finish' in the
diagram below).

How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right
corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:

Input: m = 7, n = 3
Output: 28

Solution

01/29/2020:

63. Unique Paths II
Description

class Solution {
public:
 int uniquePaths(int m, int n) {
 vector<vector<long long>> dp(m + 1, vector<long long>(n + 1, 0));
 dp[0][1] = 1;
 for (int i = 1; i < m + 1; ++i) {
 for (int j = 1; j < n + 1; ++j) {
 dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
 }
 }
 return dp[m][n];
 }
};

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the
diagram below).

The robot can only move either down or right at any point in time. The robot is
trying to reach the bottom-right corner of the grid (marked 'Finish' in the
diagram below).

Now consider if some obstacles are added to the grids. How many unique paths
would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
 [0,0,0],
 [0,1,0],
 [0,0,0]
]

Solution

01/27/2020:

64. Minimum Path Sum
Description

Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

class Solution {
public:
 int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
 int m = obstacleGrid.size(), n = obstacleGrid[0].size();
 if (m == 0 || n == 0) return 1;
 vector<vector<long>> dp(m, vector<long>(n, 0));
 dp[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
 // dp[i][j] the total number of unique moves
 // dp[i][j] = dp[i - 1][j] * (grid[i - 1][j] != 1) + dp[i][j - 1] * (grid[i]
[j - 1] != 1)
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (obstacleGrid[i][j] == 1) {
 dp[i][j] = 0;
 continue;
 }
 if (i - 1 >= 0) dp[i][j] += dp[i - 1][j] * (obstacleGrid[i - 1][j] != 1
? 1 : 0);
 if (j - 1 >= 0) dp[i][j] += dp[i][j - 1] * (obstacleGrid[i][j - 1] != 1
? 1 : 0);
 }
 }
 return (m - 1 >= 0 && n - 1 >= 0) ? dp[m - 1][n - 1] : 0;
 }
};

Given a m x n grid filled with non-negative numbers, find a path from top left
to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Solution

01/27/2020:

70. Climbing Stairs
Description

Example:

Input:
[
 [1,3,1],
 [1,5,1],
 [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

class Solution {
public:
 int minPathSum(vector<vector<int>>& grid) {
 int m = grid.size(), n = grid[0].size();
 if (m == 0 || n == 0) return 0;
 const int INF = 1e9 + 5;
 vector<vector<int>> dp(m, vector<int>(n, INF));
 dp[0][0] = grid[0][0];
 // dp[i][j]: the minimum sum from grid[0][0] to grid[i][j]
 // dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (i - 1 >= 0) dp[i][j] = min(grid[i][j] + dp[i - 1][j], dp[i][j]);
 if (j - 1 >= 0) dp[i][j] = min(grid[i][j] + dp[i][j - 1], dp[i][j]);
 }
 }
 return dp[m - 1][n - 1];
 }
};

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you
climb to the top?

Solution

01/14/2020 (Dynamic Programming):

72. Edit Distance
Description

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

class Solution {
public:
 int climbStairs(int n) {
 int s1 = 1, s2 = 2;
 for (int i = 2; i < n; ++i) {
 s1 = s1 + s2;
 swap(s1, s2);
 }
 return n >= 2 ? s2 : s1;
 }
};

Given two words word1 and word2, find the minimum number of operations required
to convert word1 to word2.

You have the following 3 operations permitted on a word:

Insert a character
Delete a character

Solution

01/27/2020:

Replace a character
Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

class Solution {
public:
 int minDistance(string word1, string word2) {
 int m = word1.size(), n = word2.size();
 if (m == 0) return n;
 if (n == 0) return m;
 const int INF = 1e9 + 5;
 vector<vector<int>> dp(m + 1, vector(n + 1, INF));
 dp[0][0] = 0;
 // dp[i][j]: the edit distance between word1[0..i] and word2[0..j]
 // dp[i][j] = dp[i - 1][j - 1] if word1[i] == word2[j]: no operations
needed
 // dp[i][j] = min(if word1[i] != word2[j]
 // dp[i - 1][j - 1] + 1, replace word1[i] by word2[j]
 // dp[i - 1][j] + 1, delete character word1[i]
 // dp[i][j - 1] + 1 delete character word2[j]
 //)
 for (int i = 1; i <= m; ++i) dp[i][0] = dp[i - 1][0] + 1;
 for (int j = 1; j <= n; ++j) dp[0][j] = dp[0][j - 1] + 1;
 for (int i = 1; i <= m; ++i) {
 for (int j = 1; j <= n; ++j) {
 if (word1[i - 1] == word2[j - 1]) {
 dp[i][j] = dp[i - 1][j - 1];
 } else {

121. Best Time to Buy and Sell Stock
Description

Solution

01/13/2020 (Dynamic Programming):

 dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
 }
 }
 }
 return dp[m][n];
 }
};

Say you have an array for which the ith element is the price of a given stock on
day i.

If you were only permitted to complete at most one transaction (i.e., buy one
and sell one share of the stock), design an algorithm to find the maximum
profit.

Note that you cannot sell a stock before you buy one.

Example 1:

Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-
1 = 5.
 Not 7-1 = 6, as selling price needs to be larger than buying price.
Example 2:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

class Solution {
public:
 int maxProfit(vector<int>& prices) {
 int n = prices.size();
 if (n <= 1) return 0;
 vector<int> diff(n - 1, 0);
 for (int i = 0; i < n - 1; ++i) {

198. House Robber
Description

Solution

01/14/2020 (Dynamic Programming):

 diff[i] = prices[i + 1] - prices[i];
 }
 int max_sum = max(0, diff[0]);
 for (int i = 1; i < n - 1; ++i) {
 if (diff[i - 1] > 0) diff[i] += diff[i - 1];
 max_sum = max(diff[i], max_sum);
 }
 return max_sum;
 }
};

You are a professional robber planning to rob houses along a street. Each house
has a certain amount of money stashed, the only constraint stopping you from
robbing each of them is that adjacent houses have security system connected and
it will automatically contact the police if two adjacent houses were broken into
on the same night.

Given a list of non-negative integers representing the amount of money of each
house, determine the maximum amount of money you can rob tonight without
alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
 Total amount you can rob = 1 + 3 = 4.
Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5
(money = 1).
 Total amount you can rob = 2 + 9 + 1 = 12.

256. Paint House
Description

Solution

05/26/2020:

class Solution {
public:
 int rob(vector<int>& nums) {
 if (nums.size() >= 2) nums[1] = max(nums[0], nums[1]);
 for (int i = 2; i < nums.size(); ++i)
 nums[i] = max(nums[i - 1], nums[i - 2] + nums[i]);
 return nums.size() > 0 ? nums.back() : 0;
 }
};

There are a row of n houses, each house can be painted with one of the three
colors: red, blue or green. The cost of painting each house with a certain color
is different. You have to paint all the houses such that no two adjacent houses
have the same color.

The cost of painting each house with a certain color is represented by a n x 3
cost matrix. For example, costs[0][0] is the cost of painting house 0 with color
red; costs[1][2] is the cost of painting house 1 with color green, and so on...
Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

Example:

Input: [[17,2,17],[16,16,5],[14,3,19]]
Output: 10
Explanation: Paint house 0 into blue, paint house 1 into green, paint house 2
into blue.
 Minimum cost: 2 + 5 + 3 = 10.

276. Paint Fence
Description

class Solution {
public:
 int minCost(vector<vector<int>>& costs) {
 if (costs.empty()) return 0;
 int n = costs.size();
 for (int i = 1; i < n; ++i) {
 costs[i][0] += min(costs[i - 1][1], costs[i - 1][2]);
 costs[i][1] += min(costs[i - 1][0], costs[i - 1][2]);
 costs[i][2] += min(costs[i - 1][0], costs[i - 1][1]);
 }
 return *min_element(costs.back().begin(), costs.back().end());
 }
};

class Solution {
public:
 int minCost(vector<vector<int>>& costs) {
 for (int i = 1; i < costs.size(); ++i) {
 for (int j = 0; j < costs[0].size(); ++j) {
 int cur_min = INT_MAX;
 for (int k = 0; k < costs[0].size(); ++k)
 if (k != j)
 cur_min = min(cur_min, costs[i - 1][k]);
 costs[i][j] += cur_min;
 }
 }
 return costs.size() > 0 ? *min_element(costs.back().begin(),
costs.back().end()) : 0;
 }
};

There is a fence with n posts, each post can be painted with one of the k
colors.

You have to paint all the posts such that no more than two adjacent fence posts
have the same color.

Return the total number of ways you can paint the fence.

Note:

Solution

01/14/2020 (Dynamic Programming):

01/14/2020: (Dynamic Programming, Improve Space Complexity):

n and k are non-negative integers.

Example:

Input: n = 3, k = 2
Output: 6
Explanation: Take c1 as color 1, c2 as color 2. All possible ways are:

 post1 post2 post3
 ----- ----- ----- -----
 1 c1 c1 c2
 2 c1 c2 c1
 3 c1 c2 c2
 4 c2 c1 c1
 5 c2 c1 c2
 6 c2 c2 c1

class Solution {
public:
 int numWays(int n, int k) {
 if (n == 0 || k == 0) return 0;
 vector<vector<int>> dp(n, vector<int>(2, 0));
 dp[0][0] = k;
 for (int i = 1; i < n; ++i) {
 dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]) * (k - 1);
 dp[i][1] = dp[i - 1][0];
 }
 return dp.back()[0] + dp.back()[1];
 }
};

class Solution {
public:
 int numWays(int n, int k) {
 if (n == 0 || k == 0) return 0;
 vector<int> dp(2, 0);
 dp[0] = k;
 for (int i = 1; i < n; ++i) {
 int tmp = dp[0];
 dp[0] = (dp[0] + dp[1]) * (k - 1);
 dp[1] = tmp;

303. Range Sum Query - Immutable
Description

Solution

01/14/2020 (Dynamic Programming):

 }
 return dp[0] + dp[1];
 }
};

Given an integer array nums, find the sum of the elements between indices i and
j (i ≤ j), inclusive.

Example:

Given nums = [-2, 0, 3, -5, 2, -1]

sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
Note:

You may assume that the array does not change.
There are many calls to sumRange function.

class NumArray {
public:
 vector<int> nums;
 NumArray(vector<int>& nums) {
 for (int i = 1; i < nums.size(); ++i) nums[i] += nums[i - 1];
 this->nums = nums;
 }

 int sumRange(int i, int j) {
 return i > 0 ? nums[j] - nums[i - 1] : nums[j];
 }
};

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray* obj = new NumArray(nums);
 * int param_1 = obj->sumRange(i,j);

338. Counting Bits
Description

Solution

01/15/2020 (Dynamic Programming):

 */

Given a non negative integer number num. For every numbers i in the range 0 ≤ i
≤ num calculate the number of 1's in their binary representation and return them
as an array.

Example 1:

Input: 2
Output: [0,1,1]
Example 2:

Input: 5
Output: [0,1,1,2,1,2]
Follow up:

It is very easy to come up with a solution with run time O(n*sizeof(integer)).
But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like
__builtin_popcount in c++ or in any other language.

class Solution {
public:
 vector<int> countBits(int num) {
 vector<int> dp(num + 1, 0);
 for (int i = 1, m = 1; i <= num; ++i) {
 if (i == m << 1) m <<= 1;
 dp[i] = dp[i % m] + 1;
 }
 return dp;
 }
};

392. Is Subsequence
Description

Solution

01/14/2020 (Dynamic Programming, Memory Limit Exceeded):

Given a string s and a string t, check if s is subsequence of t.

You may assume that there is only lower case English letters in both s and t. t
is potentially a very long (length ~= 500,000) string, and s is a short string
(<=100).

A subsequence of a string is a new string which is formed from the original
string by deleting some (can be none) of the characters without disturbing the
relative positions of the remaining characters. (ie, "ace" is a subsequence of
"abcde" while "aec" is not).

Example 1:
s = "abc", t = "ahbgdc"

Return true.

Example 2:
s = "axc", t = "ahbgdc"

Return false.

Follow up:
If there are lots of incoming S, say S1, S2, ... , Sk where k >= 1B, and you
want to check one by one to see if T has its subsequence. In this scenario, how
would you change your code?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.

class Solution {
public:
 bool isSubsequence(string s, string t) {
 if (s.size() >= t.size()) return s == t;
 return s.back() == t.back() ? isSubsequence(s.substr(0, s.size() - 1),
t.substr(0, t.size() - 1)) :
 isSubsequence(s, t.substr(0, t.size() - 1));
 }
};

01/14/2020 (Dynamic Programming (bottom-up), Two pointers):

647. Palindromic Substrings
Description

Solution

01/15/2020 (Expand Around Center):

class Solution {
public:
 bool isSubsequence(string s, string t) {
 int ps = 0, pt = 0;
 for (; ps < s.size() && pt < t.size(); ++pt)
 if (s[ps] == t[pt]) ++ps;
 return ps == s.size();
 }
};

Given a string, your task is to count how many palindromic substrings in this
string.

The substrings with different start indexes or end indexes are counted as
different substrings even they consist of same characters.

Example 1:

Input: "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".

Example 2:

Input: "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".

Note:

The input string length won't exceed 1000.

650. 2 Keys Keyboard
Description

class Solution {
public:
 int countSubstrings(string s) {
 int ret = 0;
 for (int i = 0; i < s.size(); ++i) {
 for (int l = i, r = i; l >= 0 && r < s.size() && s[l] == s[r]; --l, ++r)
++ret;
 for (int l = i, r = i + 1; l >= 0 && r < s.size() && s[l] == s[r]; --l,
++r) ++ret;
 }
 return ret;
 }
};

Initially on a notepad only one character 'A' is present. You can perform two
operations on this notepad for each step:

Copy All: You can copy all the characters present on the notepad (partial copy
is not allowed).
Paste: You can paste the characters which are copied last time.

Given a number n. You have to get exactly n 'A' on the notepad by performing the
minimum number of steps permitted. Output the minimum number of steps to get n
'A'.

Example 1:

Input: 3
Output: 3
Explanation:
Intitally, we have one character 'A'.
In step 1, we use Copy All operation.
In step 2, we use Paste operation to get 'AA'.
In step 3, we use Paste operation to get 'AAA'.

Note:

The n will be in the range [1, 1000].

Solution

06/09/2020:

877. Stone Game
Description

class Solution {
public:
 int minSteps(int n) {
 // dp[i]: the minimum steps to obtain i A's
 // dp[i] = min_j(dp[j] + 1 + (i - j) / j) = min_j(dp[j] + 1 + i / j - 1) =
min_j(dp[j] + i / j)
 vector<int> dp(n + 1, INT_MAX);
 dp[1] = 0;
 for (int i = 2; i <= n; ++i)
 for (int j = 1; j < i; ++j)
 if (i % j == 0)
 dp[i] = min(dp[i], dp[j] + i / j);
 return dp[n];
 }
};

Alex and Lee play a game with piles of stones. There are an even number of
piles arranged in a row, and each pile has a positive integer number of stones
piles[i].

The objective of the game is to end with the most stones. The total number of
stones is odd, so there are no ties.

Alex and Lee take turns, with Alex starting first. Each turn, a player takes
the entire pile of stones from either the beginning or the end of the row. This
continues until there are no more piles left, at which point the person with the
most stones wins.

Assuming Alex and Lee play optimally, return True if and only if Alex wins the
game.

Example 1:

Input: [5,3,4,5]
Output: true
Explanation:

Solution

01/15/2020 (Mathematics):

01/15/2020 (Dynamic Programming):

Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10
points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with
9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we
return true.

Note:

2 <= piles.length <= 500
piles.length is even.
1 <= piles[i] <= 500
sum(piles) is odd.

class Solution {
public:
 bool stoneGame(vector<int>& piles) {
 return true;
 }
};

class Solution {
public:
 bool stoneGame(vector<int>& piles) {
 // dp[i][j]: the largest number of stones Alex can pick
 int n = piles.size();
 vector<vector<int>> dp(n, vector<int>(n, 0));
 for (int i = 0; i < n; ++i) dp[i][i] = piles[i];
 for (int i = 0; i < n - 1; ++i) {
 for (int j = i + 1; j < n; ++j) {
 dp[i][j] = max(piles[i] + dp[i + 1][j], piles[j] + dp[i][j - 1]);
 }
 }
 return dp[0][n - 1] > max(dp[1][n - 1], dp[0][n - 2]);
 }
};

931. Minimum Falling Path Sum
Description

Solution

01/15/2020 (Dynamic Programming):

Given a square array of integers A, we want the minimum sum of a falling path
through A.

A falling path starts at any element in the first row, and chooses one element
from each row. The next row's choice must be in a column that is different from
the previous row's column by at most one.

Example 1:

Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation:
The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is [1,4,7], so the answer is 12.

Note:

1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100

class Solution {
public:
 int minFallingPathSum(vector<vector<int>>& A) {
 int n = A[0].size(), K = 1;
 if (n == 0) return 0;
 // dp[i][j]: the current smallest sum from row 0 to row i at column j.
 vector<vector<int>> dp(n, vector<int>(n, 0));
 for (int i = 0; i < n; ++i) dp[0][i] = A[0][i];
 for (int i = 1; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 int cur_min = INT_MAX;
 for (int k = -K; k <= K; ++k) {

1035. Uncrossed Lines
Description

 int l = j + k;
 if(l >= 0 && l < n) {
 cur_min = min(cur_min, dp[i - 1][l] + A[i][j]);
 }
 }
 dp[i][j] = cur_min;
 }
 }
 return *min_element(dp.back().begin(), dp.back().end());
 }
};

We write the integers of A and B (in the order they are given) on two separate
horizontal lines.

Now, we may draw connecting lines: a straight line connecting two numbers A[i]
and B[j] such that:

A[i] == B[j];
The line we draw does not intersect any other connecting (non-horizontal) line.
Note that a connecting lines cannot intersect even at the endpoints: each number
can only belong to one connecting line.

Return the maximum number of connecting lines we can draw in this way.

Example 1:

Input: A = [1,4,2], B = [1,2,4]
Output: 2
Explanation: We can draw 2 uncrossed lines as in the diagram.
We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will
intersect the line from A[2]=2 to B[1]=2.
Example 2:

Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2]
Output: 3
Example 3:

Solution

05/25/2020:

1277. Count Square Submatrices with All Ones
Description

Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1]
Output: 2

Note:

1 <= A.length <= 500
1 <= B.length <= 500
1 <= A[i], B[i] <= 2000

class Solution {
public:
 int maxUncrossedLines(vector<int>& A, vector<int>& B) {
 if (A.empty() && B.empty()) return 0;
 // dp[i][j]: the maximum number of lines can be drawn of A[0..i] and B[0..j]
 // same as longest common subsequence
 int m = A.size(), n = B.size();
 vector<vector<int>> dp(m, vector<int>(n, 0));
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 dp[i][j] = A[i] == B[j];
 if (i > 0 && j > 0) dp[i][j] = dp[i][j] + dp[i - 1][j - 1];
 if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
 if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
 }
 }
 return dp.back().back();
 }
};

Given a m * n matrix of ones and zeros, return how many square submatrices have
all ones.

Example 1:

Solution

01/14/2020 (Dynamic Programming):

Input: matrix =
[
 [0,1,1,1],
 [1,1,1,1],
 [0,1,1,1]
]
Output: 15
Explanation:
There are 10 squares of side 1.
There are 4 squares of side 2.
There is 1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.
Example 2:

Input: matrix =
[
 [1,0,1],
 [1,1,0],
 [1,1,0]
]
Output: 7
Explanation:
There are 6 squares of side 1.
There is 1 square of side 2.
Total number of squares = 6 + 1 = 7.

Constraints:

1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1

class Solution {
public:
 int countSquares(vector<vector<int>>& matrix) {
 int m = matrix.size(), n = matrix[0].size(), ret = 0;;
 vector<vector<int>> dp(m, vector<int>(n, 0));
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 if (i == 0 || j == 0)
 dp[i][j] = matrix[i][j];
 else

1314. Matrix Block Sum
Description

Solution

01/14/2020 (Definition):

 dp[i][j] = matrix[i][j] == 0 ? 0 : min(min(dp[i - 1][j - 1], dp[i - 1]
[j]), dp[i][j - 1]) + 1;
 ret += dp[i][j];
 }
 }
 return ret;
 }
};

Given a m * n matrix mat and an integer K, return a matrix answer where each
answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K
<= c <= j + K, and (r, c) is a valid position in the matrix.

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]
Example 2:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]

Constraints:

m == mat.length
n == mat[i].length
1 <= m, n, K <= 100
1 <= mat[i][j] <= 100

class Solution {
public:
 vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int K) {
 int m = mat.size(), n = mat[0].size();
 vector<vector<int>> ret(m, vector<int>(n, 0));
 for (int i = 0; i < m; ++i) {

01/14/2020 (Dynamic Programming):

1326. Minimum Number of Taps to Open to Water a Garden

 for (int j = 0; j < n; ++j) {
 for (int k = -K; k <= K; ++k) {
 for (int l = -K; l <= K; ++l) {
 if (i + k >= 0 && i + k < m && j + l >= 0 && j + l < n) {
 ret[i][j] += mat[i + k][j + l];
 }
 }
 }
 }
 }
 return ret;
 }
};

class Solution {
public:
 vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int K) {
 int m = mat.size(), n = mat[0].size();
 vector<vector<int>> dp(m, vector<int>(n, 0));
 vector<vector<int>> ret(m, vector<int>(n, 0));
 dp[0][0] = mat[0][0];
 for (int i = 1; i < m; ++i) dp[i][0] += dp[i - 1][0] + mat[i][0];
 for (int j = 1; j < n; ++j) dp[0][j] += dp[0][j - 1] + mat[0][j];
 for (int i = 1; i < m; ++i)
 for (int j = 1; j < n; ++j)
 dp[i][j] = mat[i][j] + dp[i][j - 1] + dp[i - 1][j] - dp[i - 1][j - 1];
 for (int i = 0; i < m; ++i) {
 for (int j = 0; j < n; ++j) {
 int r1 = max(i - K, 0);
 int c1 = max(j - K, 0);
 int r2 = min(i + K, m - 1);
 int c2 = min(j + K, n - 1);
 ret[i][j] = dp[r2][c2];
 if (r1 > 0) ret[i][j] -= dp[r1 - 1][c2];
 if (c1 > 0) ret[i][j] -= dp[r2][c1 - 1];
 if (r1 > 0 && c1 > 0) ret[i][j] += dp[r1 - 1][c1 - 1];
 }
 }
 return ret;
 }
};

Description

There is a one-dimensional garden on the x-axis. The garden starts at the point
0 and ends at the point n. (i.e The length of the garden is n).

There are n + 1 taps located at points [0, 1, ..., n] in the garden.

Given an integer n and an integer array ranges of length n + 1 where ranges[i]
(0-indexed) means the i-th tap can water the area [i - ranges[i], i + ranges[i]]
if it was open.

Return the minimum number of taps that should be open to water the whole garden,
If the garden cannot be watered return -1.

Example 1:

Input: n = 5, ranges = [3,4,1,1,0,0]
Output: 1
Explanation: The tap at point 0 can cover the interval [-3,3]
The tap at point 1 can cover the interval [-3,5]
The tap at point 2 can cover the interval [1,3]
The tap at point 3 can cover the interval [2,4]
The tap at point 4 can cover the interval [4,4]
The tap at point 5 can cover the interval [5,5]
Opening Only the second tap will water the whole garden [0,5]
Example 2:

Input: n = 3, ranges = [0,0,0,0]
Output: -1
Explanation: Even if you activate all the four taps you cannot water the whole
garden.
Example 3:

Input: n = 7, ranges = [1,2,1,0,2,1,0,1]
Output: 3
Example 4:

Input: n = 8, ranges = [4,0,0,0,0,0,0,0,4]
Output: 2
Example 5:

Input: n = 8, ranges = [4,0,0,0,4,0,0,0,4]
Output: 1

Solution

01/19/2020 (Dynamic Programming):

01/19/2020 (Dynamic Programming):

Constraints:

1 <= n <= 10^4
ranges.length == n + 1
0 <= ranges[i] <= 100

const int INF = 1e9 + 5;
class Solution {
public:
 int minTaps(int n, vector<int>& ranges) {
 vector<pair<int, int>> intervals;
 for (int i = 0; i <= n; ++i) intervals.push_back({max(i - ranges[i], 0),
min(i + ranges[i], n)});
 // dp[i]: the minimum number of taps cover from 0 to point i
 int best = INF;
 vector<int> dp(n + 1, INF);
 for (int i = 0; i <= n; ++i) {
 if (intervals[i].first <= 0) dp[i] = 1;
 for (int j = i + 1; j <= n; ++j) {
 if (intervals[j].first <= intervals[i].second) {
 dp[j] = min(dp[j], dp[i] + 1);
 }
 }
 if (intervals[i].second >= n)
 best = min(best, dp[i]);
 }
 return best < INF ? best : -1;
 }
};

class Solution {
public:
 int minTaps(int n, vector<int>& ranges) {
 const int INF = 1e9 + 5;
 vector<int> dp(n + 1, INF);
 for (int i = 0; i < n + 1; ++i) {
 int left = max(i - ranges[i], 0);
 int best = i - ranges[i] <= 0 ? 1 : dp[left] + 1;
 for (int j = i; j <= min(i + ranges[i], n); ++j) {
 dp[j] = min(dp[j], best);
 }

1335. Minimum Difficulty of a Job Schedule
Description

 }
 return dp.back() == INF ? -1 : dp.back();
 }
};

You want to schedule a list of jobs in d days. Jobs are dependent (i.e To work
on the i-th job, you have to finish all the jobs j where 0 <= j < i).

You have to finish at least one task every day. The difficulty of a job schedule
is the sum of difficulties of each day of the d days. The difficulty of a day is
the maximum difficulty of a job done in that day.

Given an array of integers jobDifficulty and an integer d. The difficulty of the
i-th job is jobDifficulty[i].

Return the minimum difficulty of a job schedule. If you cannot find a schedule
for the jobs return -1.

Example 1:

Input: jobDifficulty = [6,5,4,3,2,1], d = 2
Output: 7
Explanation: First day you can finish the first 5 jobs, total difficulty = 6.
Second day you can finish the last job, total difficulty = 1.
The difficulty of the schedule = 6 + 1 = 7
Example 2:

Input: jobDifficulty = [9,9,9], d = 4
Output: -1
Explanation: If you finish a job per day you will still have a free day. you
cannot find a schedule for the given jobs.
Example 3:

Input: jobDifficulty = [1,1,1], d = 3
Output: 3
Explanation: The schedule is one job per day. total difficulty will be 3.
Example 4:

Input: jobDifficulty = [7,1,7,1,7,1], d = 3

Solution

01/26/2020:

Output: 15
Example 5:

Input: jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
Output: 843

Constraints:

1 <= jobDifficulty.length <= 300
0 <= jobDifficulty[i] <= 1000
1 <= d <= 10

class Solution {
public:
 int minDifficulty(vector<int>& jobDifficulty, int d) {
 int n = jobDifficulty.size();
 if (n < d) return -1;
 vector<vector<int>> diff(n, vector<int>(n, 0));
 // diff[i][j]: max diff from jobDifficulty[i] to jobDifficulty[j]
 for (int i = 0; i < n; ++i) {
 diff[i][i] = jobDifficulty[i];
 for (int j = i + 1; j < n; ++j) {
 diff[i][j] = max(diff[i][j - 1], jobDifficulty[j]);
 }
 }
 const int INF = 1e9 + 5;
 // dp[i][j]: min diff of i jobs in j days
 // dp[i][j] = min(dp[j - 1][j - 1] + diff[j][i], dp[j][j - 1] + diff[j + 1]
[i], ..., dp[i - 1][j - 1] + diff[i][i])
 vector<vector<int>> dp(n, vector<int>(d, INF));
 for (int j = 0; j < d; ++j) {
 for (int i = 0; i < n; ++i) {
 if (j == 0) {
 dp[i][j] = diff[j][i];
 } else {
 for (int k = j - 1; k < i; ++k) {
 dp[i][j] = min(dp[i][j], dp[k][j - 1] + diff[k + 1][i]);
 }
 }
 }
 }
 return dp[n - 1][d - 1];
 }

1458. Max Dot Product of Two Subsequences
Description

Solution

};

Given two arrays nums1 and nums2.

Return the maximum dot product between non-empty subsequences of nums1 and nums2
with the same length.

A subsequence of a array is a new array which is formed from the original array
by deleting some (can be none) of the characters without disturbing the relative
positions of the remaining characters. (ie, [2,3,5] is a subsequence of
[1,2,3,4,5] while [1,5,3] is not).

Example 1:

Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from
nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.
Example 2:

Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.
Example 3:

Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.

Constraints:

1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000

05/23/2020:

class Solution {
public:
 int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
 // dp[i][j]: the maximum dot product of two subsequences
 // nums1[0..i], nums2[0..j];
 // dp[i][j] = max(max(0, nums1[i] * nums2[j]) + dp[i - 1][j - 1], dp[i - 1]
[j], dp[i][j - 1])
 int n1 = nums1.size(), n2 = nums2.size();
 vector<vector<int>> dp(n1, vector<int>(n2, INT_MIN));
 dp[0][0] = nums1[0] * nums2[0];
 for (int i = 1; i < n1; ++i) dp[i][0] = max(nums1[i] * nums2[0], dp[i - 1]
[0]);
 for (int j = 1; j < n2; ++j) dp[0][j] = max(nums1[0] * nums2[j], dp[0][j -
1]);
 for (int i = 1; i < n1; ++i) {
 for (int j = 1; j < n2; ++j) {
 dp[i][j] = max(nums1[i] * nums2[j], 0) + dp[i - 1][j - 1];
 dp[i][j] = max(dp[i][j], dp[i - 1][j]);
 dp[i][j] = max(dp[i][j], dp[i][j - 1]);
 dp[i][j] = max(dp[i][j], nums1[i] * nums2[j]);
 }
 }
 return dp[n1 - 1][n2 - 1];
 }
};

class Solution {
public:
 int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
 int n1 = nums1.size(), n2 = nums2.size();
 vector<vector<int>> dp(n1, vector<int>(n2));
 for (int i = 0; i < n1; ++i) {
 for (int j = 0; j < n2; ++j) {
 dp[i][j] = nums1[i] * nums2[j];
 if (i > 0 && j > 0) dp[i][j] = max(dp[i][j], max(nums1[i] * nums2[j], 0)
+ dp[i - 1][j - 1]);
 if (i > 0) dp[i][j] = max(dp[i][j], dp[i - 1][j]);
 if (j > 0) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
 }
 }
 return dp[n1 - 1][n2 - 1];
 }
};

1473. Paint House III
Description

There is a row of m houses in a small city, each house must be painted with one
of the n colors (labeled from 1 to n), some houses that has been painted last
summer should not be painted again.

A neighborhood is a maximal group of continuous houses that are painted with the
same color. (For example: houses = [1,2,2,3,3,2,1,1] contains 5 neighborhoods
[{1}, {2,2}, {3,3}, {2}, {1,1}]).

Given an array houses, an m * n matrix cost and an integer target where:

houses[i]: is the color of the house i, 0 if the house is not painted yet.
cost[i][j]: is the cost of paint the house i with the color j+1.
Return the minimum cost of painting all the remaining houses in such a way that
there are exactly target neighborhoods, if not possible return -1.

Example 1:

Input: houses = [0,0,0,0,0], cost = [[1,10],[10,1],[10,1],[1,10],[5,1]], m = 5,
n = 2, target = 3
Output: 9
Explanation: Paint houses of this way [1,2,2,1,1]
This array contains target = 3 neighborhoods, [{1}, {2,2}, {1,1}].
Cost of paint all houses (1 + 1 + 1 + 1 + 5) = 9.
Example 2:

Input: houses = [0,2,1,2,0], cost = [[1,10],[10,1],[10,1],[1,10],[5,1]], m = 5,
n = 2, target = 3
Output: 11
Explanation: Some houses are already painted, Paint the houses of this way
[2,2,1,2,2]
This array contains target = 3 neighborhoods, [{2,2}, {1}, {2,2}].
Cost of paint the first and last house (10 + 1) = 11.
Example 3:

Input: houses = [0,0,0,0,0], cost = [[1,10],[10,1],[1,10],[10,1],[1,10]], m = 5,
n = 2, target = 5
Output: 5
Example 4:

Input: houses = [3,1,2,3], cost = [[1,1,1],[1,1,1],[1,1,1],[1,1,1]], m = 4, n =
3, target = 3
Output: -1

Solution

06/06/2020:

Explanation: Houses are already painted with a total of 4 neighborhoods [{3},
{1},{2},{3}] different of target = 3.

Constraints:

m == houses.length == cost.length
n == cost[i].length
1 <= m <= 100
1 <= n <= 20
1 <= target <= m
0 <= houses[i] <= n
1 <= cost[i][j] <= 10^4

int dp[101][101][20];
class Solution {
public:
 int minCost(vector<int>& houses, vector<vector<int>>& cost, int m, int n, int
target) {
 fill_n(dp[0][0], 101 * 101 * 20, INT_MAX);
 fill_n(dp[0][0], 20, 0);
 for (int i = 1; i <= m; ++i) {
 int hi = houses[i - 1] - 1;
 for (int k = 1; k <= target; ++k) {
 for (int j = 0; j < n; ++j) {
 if (hi != -1) {
 dp[k][i][hi] = hi == j ? min(dp[k][i][hi], dp[k][i - 1][hi]) :
min(dp[k][i][hi], dp[k - 1][i - 1][j]);
 } else {
 if (dp[k][i - 1][j] != INT_MAX)
 dp[k][i][j] = min(dp[k][i][j], dp[k][i - 1][j] + cost[i - 1][j]);
 for (int l = 0; l < n; ++l)
 if (l != j && dp[k - 1][i - 1][l] != INT_MAX)
 dp[k][i][j] = min(dp[k][i][j], dp[k - 1][i - 1][l] + cost[i - 1]
[j]);
 }
 }
 }
 }
 int ret = *min_element(dp[target][m], dp[target][m] + n);
 return ret == INT_MAX ? -1 : ret;
 }
};

1478. Allocate Mailboxes
Description

int dp[101][20][101];
class Solution {
public:
 int minCost(vector<int>& houses, vector<vector<int>>& cost, int m, int n, int
target) {
 for (int k = 0; k <= target; ++k)
 for (int i = 0; i <= m; ++i)
 for (int j = 0; j < n; ++j)
 dp[i][j][k] = INT_MAX;
 for (int j = 0; j < n; ++j) dp[0][j][0] = 0; // no houses, with target 0
 for (int i = 1; i <= m; ++i) {
 int house_i = houses[i - 1] - 1;
 if (house_i != -1) {
 for (int k = 1; k <= target; ++k) {
 dp[i][house_i][k] = min(dp[i][house_i][k], dp[i - 1][house_i][k]);
 for (int j = 0; j < n; ++j) {
 if (j == house_i) continue;
 dp[i][house_i][k] = min(dp[i][house_i][k], dp[i - 1][j][k - 1]);
 }
 }
 } else {
 for (int k = 1; k <= target; ++k) {
 for (int j = 0; j < n; ++j) {
 if (dp[i - 1][j][k] != INT_MAX) dp[i][j][k] = min(dp[i][j][k], dp[i
- 1][j][k] + cost[i - 1][j]);
 for (int l = 0; l < n; ++l) {
 if (l == j || dp[i - 1][l][k - 1] == INT_MAX) continue;
 dp[i][j][k] = min(dp[i][j][k], dp[i - 1][l][k - 1] + cost[i - 1]
[j]);
 }
 }
 }
 }
 }
 int ret = INT_MAX;
 for (int j = 0; j < n; ++j)
 ret = min(ret, dp[m][j][target]);
 return ret == INT_MAX ? -1 : ret;
 }
};

Solution

06/13/2020:

Given the array houses and an integer k. where houses[i] is the location of the
ith house along a street, your task is to allocate k mailboxes in the street.

Return the minimum total distance between each house and its nearest mailbox.

The answer is guaranteed to fit in a 32-bit signed integer.

Example 1:

Input: houses = [1,4,8,10,20], k = 3
Output: 5
Explanation: Allocate mailboxes in position 3, 9 and 20.
Minimum total distance from each houses to nearest mailboxes is |3-1| + |4-3| +
|9-8| + |10-9| + |20-20| = 5
Example 2:

Input: houses = [2,3,5,12,18], k = 2
Output: 9
Explanation: Allocate mailboxes in position 3 and 14.
Minimum total distance from each houses to nearest mailboxes is |2-3| + |3-3| +
|5-3| + |12-14| + |18-14| = 9.
Example 3:

Input: houses = [7,4,6,1], k = 1
Output: 8
Example 4:

Input: houses = [3,6,14,10], k = 4
Output: 0

Constraints:

n == houses.length
1 <= n <= 100
1 <= houses[i] <= 10^4
1 <= k <= n
Array houses contain unique integers.

int dp[105][105];

int solve(vector<int>& v, int n, int k) {
 if (n == 0) return 0;
 if (k == 0) return 1e9;
 if (dp[n][k] >= 0) return dp[n][k];
 int ret = 1e9;
 for (int take = 1; take <= n; ++take) {
 int rhs = n - 1;
 int lhs = rhs - take + 1;
 int mid = (lhs + rhs) / 2;
 int candidate = 0;
 for (int i = lhs; i <= rhs; ++i) {
 candidate += abs(v[mid] - v[i]);
 }
 ret = min(ret, candidate + solve(v, n - take, k - 1));
 }
 dp[n][k] = ret;
 return ret;
}

class Solution {
public:
 int minDistance(vector<int>& houses, int k) {
 memset(dp, -1, sizeof(dp));
 sort(houses.begin(), houses.end());
 return solve(houses, houses.size(), k);
 }
};

	Dynamic Programming Questions
	5. Longest Palindromic Substring
	53. Maximum Subarray
	62. Unique Paths
	63. Unique Paths II
	64. Minimum Path Sum
	70. Climbing Stairs
	72. Edit Distance
	121. Best Time to Buy and Sell Stock
	198. House Robber
	256. Paint House
	276. Paint Fence
	303. Range Sum Query - Immutable
	338. Counting Bits
	392. Is Subsequence
	647. Palindromic Substrings
	650. 2 Keys Keyboard
	877. Stone Game
	931. Minimum Falling Path Sum
	1035. Uncrossed Lines
	1277. Count Square Submatrices with All Ones
	1314. Matrix Block Sum
	1326. Minimum Number of Taps to Open to Water a Garden
	1335. Minimum Difficulty of a Job Schedule
	1458. Max Dot Product of Two Subsequences
	1473. Paint House III
	1478. Allocate Mailboxes

