Roll No. POB1838005

Total Pages: 2

BT-2/M-22

42033

SEMICONDUCTOR PHYSICS

Paper-BS-115-A

Time Allowed: 3 Hours]

[Maximum Marks: 75

Note: Attempt five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

UNIT-I

- 1. (a) Explain the lattice translation vector and symmetry operations in a crystal.
 - (b) What do you mean by point defects in solids? Derive an expression for concentration of Frenkel defects in a crystal.
- 2. (a) Explain hep structure. Calculate its packing fraction.

(b) Explain two-dimensional and three-dimensional Bravais lattice.

UNIT-II

- 3. (a) What are De-Broglie waves? What is the relation between De-Broglie group velocity associated with the wave packet and velocity of the particle.
 - (b) Derive Schrodinger time independent equation for matter waves. Give physical significance of the wave function.

7

Learn Loner

4.	(a)	Explain the non existence of electron in nucleus using Heisenberg's uncertainty principle. – 8
	(b)	Explain the concept of wave particle duality with examples.
		UNIT-III
5.	. (a)	Based on band theory of solids distinguish between metals, insulators and semiconductor.
	(b)	Explain the electrical conductivity in metals using classical free electron theory.
6.	(a)	Write short notes on the following:
		(i) Fermi Energy. (ii) Brillion zone.
	(b)	Explain Hall effect and its applications.
		UNIT-IV
7.	(a)	Explain the working and characteristics of Bipolar Junction Transistor.
	(b)	What do you mean by extrinsic semiconductor? Derive an expression for carrier concentration in extrinsic semiconductor.
}.	(a)	Describe the formation of p-n junction. Discuss its current voltage characteristics.
	(b)	Explain the construction and working of semiconducto laser.